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Abstract

The ability to perform causal and counterfactual reasoning are central properties1

of human intelligence. Decision-making systems that can perform these types of2

reasoning have the potential to be more generalizable and interpretable. Simulations3

have helped advance the state-of-the-art in this domain, by providing the ability to4

systematically vary parameters (e.g., confounders) and generate examples of the5

outcomes in the case of counterfactual scenarios. However, simulating complex6

temporal causal events in multi-agent scenarios, such as those that exist in driving7

and vehicle navigation, is challenging. To help address this, we present a high-8

fidelity simulation environment that is designed for developing algorithms for9

causal discovery and counterfactual reasoning in the safety-critical context. A core10

component of our work is to introduce agency, such that it is simple to define and11

create complex scenarios using high-level definitions. The vehicles then operate12

with agency to complete these objectives, meaning low-level behaviors need only13

be controlled if necessary. We perform experiments with three state-of-the-art14

methods to create baselines and highlight the affordances of this environment.15

Finally, we highlight challenges and opportunities for future work.16

1 Introduction17

18

Modern machine learning algorithms perform well on clearly defined pattern recognition tasks but19

still fall short generalizing in the ways that human intelligence can [1, 2]. This leads to unsatisfactory20

results on tasks that require extrapolation from training examples, e.g., out-of-domain recognition [3]21

and open set recognition [4]. Causal reasoning sets human intelligence apart from pattern matching [5]22

and enables us to answer counterfactual questions such as “what would have happened if...” Reasoning23

such as this is not only important in helping create learning algorithms robust to generalization but is24

also attractive in applications that require transparent and/or explainable decision making (e.g., safety25

critical scenarios including medical decision making [6] and autonomous driving [7]).26

Discovering latent causal mechanisms and handling confounders are the key tasks in causal reasoning.27

Confounders refer to factors that impact both the intervention and the outcomes [8]. These factors28

can be “measureable” in some cases and hidden in others. If confounders are hidden then it is29

difficult to control for them. Ideally, we would have the ability to systematically examine the impact30

of many different types/classes of confounders both “hidden” and measurable whilst developing31

causal interference algorithms. Furthermore, we would like the ability to do so in contexts that32

mirror or match our real-world applications. Recent approaches to causal reasoning involve capturing33

causal structure and disentangling the underlying factors via an inference algorithm (e.g., neural34
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Figure 1: We present a high-fidelity simulation environment designed for experiments on causal
reasoning in the safety-critical context of driving. The vehicles have agency to “decide” their low-
level behaviors, which enables scenarios to be designed with simple high-level configurations. Many
complex simulated scenarios can be executed with complex causal relationships. Our environment
then supports the logging of rich multimodal signals during simulation for forming datasets.

model) [8, 9, 10, 11] and combining this with a graphical representations (e.g., directed acyclic35

graphs - DAG) to capture the underlying dynamics. These have been employed successfully to make36

long-term future predictions based on short observations [10].37

Causal inference could make a significant impact in safety critical scenarios such as autonomous38

driving [12, 13] where trajectory prediction is an important component. Researchers have used video39

and synthetic datasets [14, 7, 15, 16] for analyzing causality in traffic accidents and understanding40

driving scenes and behaviors. However, some of these datasets are “static” (i.e., comprised of41

videos that cannot be changed) which means that certain counterfactual scenarios are not present42

and the distribution of events may be quite uneven/sparse making it difficult to learn relationships.43

Other datasets have limited diversity in terms of the types of events, e.g., focusing on crashes44

specifically [15]. Our goal in this work is not to propose a new trajectory prediction algorithm but45

rather to illustrate how CausalCity can be used and trajectory prediction is a good task to do so.46

Figure 2: Simulation is a powerful tool to
study causal reasoning. Here we show exam-
ples of environments used for causal reasoning.
A) V-CDN [10], B) CLEVRER [9], C) Causal-
World [17]. In contract with prior work, D) Causal-
City (Ours) combines a high-fidelity visual envi-
ronment with the ability to define and generate
complex causal scenarios.

Simulation has proven helpful as a way of in-47

vestigating problems involving causal and coun-48

terfactual reasoning. The parameters of syn-49

thetic environments can be systematically con-50

trolled, thereby enabling causal relationships51

to be established and confounders to be intro-52

duced [10, 9, 17]. However, some of this prior53

work has approached this via a relatively sim-54

plistic set of entities and environments (e.g.,55

balls moving in 2D connected via rods and56

springs [10] or 3D objects moving on a surface57

and colliding [9] - see Fig. 2) with only a few58

variables. Other prior work has had a limited59

number of degrees of freedom [17]. This leaves60

little room to explore, and control for, different61

causal relationships among entities. We posit62

that enabling the agency on each entity is crucial63

to creating simulation environments that reflect64

the nature and complexity of these types of tem-65

poral real-world reasoning tasks. This includes66

scenarios where each entity makes decisions on67

its own while interacting with each other, e.g.,68

pedestrians in a crowded street and cars on a69

busy road. What agency provides is the ability70

to define scenarios at a higher level, rather than71

specifying every single low-level action.72

To this end, we introduce and publicly release a high-fidelity simulation environment, summarized73

in Fig. 1, with AI agent controls to create scenarios for causal and counterfactual reasoning. This74

environment reflects the real-world, safety critical scenario of driving. We want a simulation75
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environment that enables controllable scenario generation that can be used for temporal and causal76

reasoning. This environment allows us to create complex scenarios including different types of77

confounders with relatively little effort.78

To illustrate this, our simulation engine allows the introduction of any number of vehicles, each79

of which is controlled at a high-level and has basic AI agency to maneuver avoiding collisions,80

navigating corners, stopping at traffic lights, etc. The high-level controls for each vehicle allow us to81

define each agent’s behavior in an abstract form controlling their sequence of actions (e.g., turn left at82

the next intersection, following that merge into the left lane etc.), their speed changes in different83

legs of the journey, their stopping distance behind other vehicles etc. Furthermore, our simulation84

can be used to introduce confounders to the environment such as the time of day and the weather85

conditions, which can be set both changing the visual appearance of the scene but also enabling86

causal relationships to be introduced (for example between vehicle speed or stopping distance and the87

amount of water on the roads). Again, agency helps vehicles to change their behavior dynamically88

from the confounders. Also, traffic lights can be controlled at a low (the timing of each individual89

light) and high (transition timings for all the lights) levels. All these present opportunities for future90

work on causal reasoning. In this work we perform a set of experiments on causal discovery; however,91

we give other examples of how the simulation might be used in Section 6 and on our project page.92

To summarize, our contributions include: 1) We present a high-fidelity simulation driving environ-93

ment with vehicles (agents) that is designed for developing and testing approaches for causal and94

counterfactual reasoning. 2) We test benchmark causal inference algorithms on trajectory prediction95

and causal discovery tasks. 3) We demonstrate how this environment can be used to systematically96

synthesize data to introduce complex confounders and illustrate how these impact the performance of97

our baselines. 4) Our environment, a snapshot of the dataset used for analyses, and code are released98

with this paper (see GITHUB link on the first page). Our simulation allows for the generation of99

large, multimodal, complex causal datasets within the domain of vehicle navigation and we hope that100

it will enable researchers to tackle new research problems.101

2 Related Work102

Causal Reasoning. Schölkopf [2] argues that causality and the “modeling and reasoning about103

interventions” can help advance machine learning as a whole and contribute to addressing some104

of the most challenging problems, including domain-transfer, extrapolation and other forms of105

generalization beyond what is explicitly observed in training datasets. These are some of the reasons106

that causal reasoning has received growing attention in the machine learning community.107

Variational autoencoders (VAE) have been used to capture the causal structure in interactions [8, 18]108

due to their ability to model uncertainty in data. The encoder can be used to estimate an unknown109

latent space in order to summarize the causal effects [8] and summarize or disentangle representations110

of objects or events of interest from confounders [19]. Neural Relational Inference (NRI) [18] train111

an unsupervised VAE, where the latent representation captures the underlying interaction graph. The112

approach then learns to simultaneously capture the dynamics and infer interactions. This NRI work113

and others leverage a graph neural network for reconstruction [20, 21]. Bhattacharya et al. [21] cast114

causal discovery as a continuous optimization problem with differentiable constraints to find the115

best fitting acyclic directed mixed graph. V-CDN [10] discovers an underlying causal graph without116

explicit intervention in the scene and identifies interactions between entities from a short sequence of117

images and make long-term future predictions.118

Simulation for Causal Reasoning. Computer graphics-based simulations have allowed researchers119

to explore the causality in video. PhysNet [22] learns physics by using a 3D game engine to create120

small towers of wooden blocks with randomized stability. Happens [23] focuses on understanding the121

movements of objects as a result of applying external forces to them. A large-scale dataset of forces122

in scenes is built by reconstructing all images in SUN RGB-D dataset [24] in a physics simulator to123

estimate the physical movements of objects caused by external forces applied to them. Billiards [25]124

learns to play a simulated billiards game, which requires planning and executing goal-specific actions125

in varied and unseen environments.126

Johnson et al. [26] introduced the CLEVR as a simulation engine for visual question answering (VQA).127

While this featured static images of objects with different shapes and colors, it was followed by the128

CLEVRER [9], which allows for generating objects that move and collide with one another in a 3D129
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environment. Specifically, this enables counterfactual reasoning to be conducted. Causal World [17] is130

another recent example of simulation for causal reasoning based on a robotic manipulation benchmark.131

This is a 3D environment that exposes high-level variables in the causal generative model, such as132

properties of blocks, goals, robot links and others like gravity.133

Driving simulation. Our proposed simulation environment is designed to be applicable to studying134

causal reasoning generally; however, the specific environment we chose is that of driving. The135

driving scenario has been used to generate synthetic data, e.g., GTACrash [15] and VIENA [16]. The136

former involves generating a dataset for detecting car accident, whereas the latter involves generating137

specific actions for predicting driver maneuvers, pedestrian intentions, front car intentions, traffic rule138

violations, and accidents scenarios. CARNOVEL [27] is a driving benchmark specifically targeting139

out-of-distribution generalization using adaptive robust imitative planning (AdaRIP) and DESIRE [28]140

involves reasoning about scenes, context and past trajectories to predict future trajectories or locations.141

R2PR [29] and DATF [30] also approach future trajectory forecasting a task that is relevant in the142

context of causal reasoning in driving simulation. However, these examples are not specifically143

designed around the idea of causal discovery containing no counterfactual reasoning or control for144

confounders yet in their simulations or datasets. Also there are simulators [31, 32] that support145

development of autonomous cars but do not focus on causal reasoning.146

Causal reasoning for autonomous driving has been attended to understand the reason of the maneuvers147

of other vehicles and pedestrians for escaping accidents [14, 7, 15, 16]. This is a popular domain148

for causal analysis. Drogon is a causal reasoning framework for future trajectory forecasting [12].149

The authors use LiDAR data, and design a conditional prediction model to forecast goal-oriented150

trajectories. Finally, causal reasoning helps to reason about the behavior of vehicles as future locations151

conditioned on the intention. Ramanishka et al. [14] present a dataset of 104 hours of real human152

driving for learning driver behavior and causal reasoning. Another benchmark for analyzing causality153

in traffic accident videos was presented by You et al. [7]. In this work they decompose an accident154

into a pair of events and analyze the cause and effect.155

Trajectory Prediction. In temporal reasoning research, trajectory prediction is a common task [9, 10],156

partly due to the practical utility in numerous applications [33, 34, 35]. In our evaluation, we use157

trajectory prediction as a key metric for performance and therefore it is helpful to briefly introduce158

work on this topic. Most of these algorithms have been developed for scenarios with a single type159

of agents. One such task is predicting pedestrians’ future movements [36, 37, 38, 39], which is160

important for autonomous vehicle and robotics design. Social behaviors have been widely exploited161

in predicting pedestrians movements; while relevant for pedestrians, they are much less relevant162

for vehicles. Thus the focus on vehicle trajectory prediction has been on modeling the motion of163

individual agents (their past trajectory) and the surrounding environment [28, 40, 41]. A notable164

exception is estimating lane changes on highways [42, 43]; previous efforts have tackled predicting165

vehicle trajectories in urban scenarios [28, 40, 44].166

Compared to single-agent scenarios, multi-agent modeling and prediction is a challenging task for167

control applications because agents interact with each other. Modeling dependencies between agents168

is especially critical in scenarios such as modelling vehicles at intersections. Previous approaches169

have focused on relatively sparse scenarios with only a few heterogeneous interactions. In such cases,170

the interaction between agents can be modelled using social forces, velocity obstacles [45], or linear171

trajectory avoidance [46]. When considering more complex interactions, learning-based approaches172

have been applied between multiple pedestrians [34, 47, 48, 36, 49], vehicles [50, 51, 43, 28, 52, 53],173

and athletes [54, 51]. These approaches attempt to generalize from previously observed interactions174

to multi-agent behavior in new situations. To perform prediction without supervision, Ehrhardt et al.175

[55] learn intuitive physics from visual observations and Kipf et al. [56] adopt contrastive learning to176

perform self-supervision on structured world models.177

3 Simulation Engine178

Our goal is to create a high visual-fidelity simulation environment that can be used to systematically179

implement complex causal relationships in realistic scenarios. For this we focus on city driving180

scenarios and use a set of downtown city blocks and roads with multiple four way intersections and181

traffic lights. Fig. 3 shows examples of the visual appearance of the simulation environment, with182

first person views from close to street level.183
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Our simulation environment – dubbed CausalCity – is built upon AirSim [31], which acts as a184

plugin for Unreal Engine and allows for obtaining training data using realistic graphics and physics185

simulations. Our environment contains a city block with multiple four-way intersections and traffic186

lights with cars navigating through it. The environment is controlled in two primary ways. First, there187

is a JSON configuration file that defines a set of scenarios. Each scenario lists the vehicles that should188

be present, their start locations, and the high-level actions that each vehicle should take. Secondly, a189

python API allows scenarios to be triggered to start, parameters changed in real-time, and enables190

convenient logging of data as the scenarios progress. While scenarios with the same high-level191

definitions can be played out identically for reproducibility, it is easy to add variability by altering the192

number, starting points, actions or velocities of the vehicles or changing other configurations such as193

the timing of traffic lights, time of the day, and weather conditions.194

Figure 3: CausalCity simulation environment.

Environment Features. Our city block in-195

cludes the typical elements that might be ob-196

served in such an environment (e.g., buildings,197

trees, lamp posts, road works, etc.) (see Fig. 3);198

along with well defined lanes and traffic lights199

that can be explicitly targeted. The objects in200

the environment can be easily added/removed201

either prior to scene simulation, or dynamically202

through a Python API to create different config-203

urations of static elements.204

Vehicles. We introduce vehicles to the scene in205

a systematic manner through an AI traffic mod-206

ule, which handles the low-level navigation con-207

trols.1 These vehicles traverse the scene along208

splines (routes) that are selected via the config-209

urable scenario file. The environment contains predefined splines running through each lane and210

intersection according to general traffic rules (based on right-hand drive). In the configuration file211

each vehicle is given a starting (spawn) point, identified by a spline ID, and a list of high-level actions212

to execute post-spawn. Merging actions (mergeL/mergeR) happen along lane splines and turning213

actions (left/right) happen at intersections. The vehicle states such as positions/velocities can214

be queried and obtained dynamically during scenario run-time for logging purposes. If desired,215

information regarding any collisions observed during the scenario can also be recorded.216

Traffic Lights. The environment also contains traffic lights at every intersection, and the vehicles217

respond to these traffic signals. While keeping traffic flowing in a realistic manner, this also introduces218

causal connections at the intersections. The sequence and timing of these lights can be controlled219

during the scenario run-time. For simplicity, with our environment, we provide scripts to show how220

to configure the timing of lights in a sequence and how to run these asynchronously. Vehicles can221

be “forced” to continue driving at a red light, which can be used to simulate dangerous events and222

increase the likelihood of collisions.223

Environment. Environmental factors can be modified to create variations in the visual appearance of224

the scene. These include introducing and controlling the strength of weather effects: rain, fog and225

snow; changing the time of day, and varying the wetness of the road. This allows for new parameters226

to be introduced as confounders (for example, road wetness during rain can lead to unpredictable227

steering behavior), and increase the variability in the observed scene in both car behavior as well as228

visual appearance of the scene, which makes perception tasks more challenging.229

Views/Cameras. Our environment enables cameras to be placed at any location and moved during230

a scenario to obtain image data. This means that first person, third person, and bird’s eye view231

perspectives are possible. For simplicity, in our first baselines presented in this paper we use a bird’s232

eye view to visualize the scenarios. It is also possible to equip each vehicle with a camera of its own233

to obtain first person perspectives from the vehicles – presenting opportunities for future work.234

The environment also allows for recording various modalities of data from multiple cameras for235

logging/visualization, such as RGB, depth and segmentation maps. In the current version, we record236

RGB images of the bird’s eye view, as well as ground truth instance segmentation maps (generated237

1https://www.unrealengine.com/marketplace/en-US/product/arch-vis-ai-traffic-system

5



Figure 4: Datasets. We created two datasets, a toy dataset and our CausalCity dataset, both with
cars that are connected via A) causal “leader-follower” relationships where one car follows another
(A i-iii) and non-causal or random relationships (A iv-vi). B) Shows a heatmap of the paths of the
vehicles in the toy dataset and CausalCity dataset. The toy dataset uses a similar city grid structure
but has simplified behaviors (constant velocities, straight trajectories, etc.). The CausalCity dataset
contains more realistic behaviors that introduce challenging confounders. Notice how there are longer
dwell times in different lanes due to traffic patterns etc.

by AirSim), where unique masks corresponding to each car in the scene are drawn for ease of use.238

For simplicity, our segmentation maps contain only the masks corresponding to the cars, and other239

scene objects are ignored.240

As described in the following section, we use this framework to generate multiple scenarios, each241

scenario driven by the corresponding configuration setting, an example of which can be seen in242

Listing 1. Each scenario involves the vehicles moving through set routes, while the traffic lights and243

other scene variables can vary as set by the user. Data such as vehicle positions, images etc. are244

logged as the scenario evolves.245

Logging. Our environment allows for rich logging of events. In the current version, for each frame246

we log the positions of the vehicles (x, y, z, σx, σy, σz) and the state of the traffic lights (current color247

and duration since last change). But the positions of other objects, weather events, time of days can248

all also be recorded as necessary.249

4 Dataset250

To illustrate the potential of our simulation environment, we generate data and evaluate state-of-the-251

art causal reasoning approaches on it. Previous work has focused on causal discovery in relatively252

controlled settings (e.g., balls moving in a 2D plane [10] or 3D objects colliding [9]). As we branch253

out to more realistic and practical scenarios (e.g., autonomous driving) we quickly encounter a254

number of additional complexities. One way to think about these complexities is in the form of255

confounders. For example, driving would be extremely difficult and unsafe without traffic signals. If256

we were to attempt to determine a causal relationship between the trajectory of two vehicles (e.g., is257

a car following an ambulance), the effect of traffic signals on their behavior could be considered a258

confounder.259

Rather than leap directly to a context with multiple confounders, we created two versions of our data:260

1) a toy dataset with causal relationships but without agency and no confounders, 2) a complex dataset261

created using our high fidelity simulation environment with agency (and therefore the confounders262

associated with it). In both cases we generated scenarios with a fixed number of vehicles (4,8,12)263

driving in the environment and a fixed number of causal relationships.264

To introduce causal relationships between the vehicles we create “links” (or edges in the causal265

graph). The edges are defined as a “leader-follower” relationship in which two cars are given the266

same set of actions but one starts ahead of the other. In each scenario we create pairs (e.g., three pairs267

of six cars = three edges) of “leader-followers”; in the causal reasoning language, the leader vehicles268

are the interventions and the follower vehicles are the outcomes; the former causes the latter to move269

in certain ways. The remaining six vehicles are not causally connected to any other vehicle. This is a270

sparse graph (only three edges) but that is reasonable as causal relationships in the real life are often271

sparse. See Fig. 4A for example trajectories. This is just one example of the possible application of272
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our simulation, see Section 6 and the project page for more examples. For simplicity in both datasets273

we position the camera from a bird’s eye view perspective above the environment looking down. We274

record 150 RGB and segmentation frames for each scenario and log the position of each vehicle (6275

degrees-of-freedom) at the same rate. Our dataset is available on our project page.276

4.1 Toy Dataset277

Our toy dataset uses a road layout that mimics the city block in the simulation environment. The cars278

do not have agency and thus move at a fixed velocities (2 pixels per frame - similar to the average279

speed in the CausalCity dataset), and there are no confounders such as traffic lights that influence the280

velocity of the vehicles. The vehicles do not collide with one another so their paths are uninterrupted.281

The leader vehicles start, and remain (since both have the same velocity), exactly 30 pixels in front282

of the follower vehicles in each pair. See our supplementary material for more examples of the283

trajectories of the cars in our toy dataset. We create a dataset with 4000/500/500 scenarios for the284

train/validation/test splits. See a heatmap in Fig. 4B that shows the average dwell time across the285

dataset - notice how uniform it is and contrast that with the heatmap for the CausalCity dataset.286

4.2 CausalCity Dataset287

In this dataset the cars have agency, controlled by our simulation engine, and thus have more realistic288

behaviors than in the toy dataset. Each vehicle has a set of five actions to complete but can drive289

without manually specified routes. The cars can accelerate when there is space ahead of them and290

reduce speed when approaching a slower moving vehicle or traffic signal. Their internal controls291

cause a vehicle to brake when it is approaching another vehicle. However, in some cases, if traveling292

fast, there may be collisions which can impact the trajectory of the cars.293

Traffic lights help control the flow of traffic and also impact the velocity of vehicles regardless of294

causal relationships (thus they are confounders). These factors mean that even if two cars are causally295

linked, they will not remain a fixed distance away from each other. The “follower” vehicles may296

catch up with the ”leader” if the “leader” is stopped at a red traffic signal, or could fall further behind297

it if leader makes it past a light but it turns red as the follower approaches it. See Fig. 4A and our298

supplementary for examples of the trajectories of the cars in our CausalCity dataset.299

We observe that introducing agency to a simulation that enables highlevel scenario definitions will300

inevitably introduce confounders to the environment make the causal relationships more difficult to301

recover using the baseline algorithms (as we will see in the results). Once again, we create dataset302

with 4000/500/500 scenarios for the train/validation/test splits.303

5 Experiments304

We evaluate three state-of-the-art causal inference algorithms – NRI [18], NS-DR [9] and V-CDN [10]305

– on both the toy and CausalCity datasets. Training was carried out on a single Nvidia P100 GPU.306

Each experiment typically required 10 hours of training and evaluation time.307

5.1 Models308

NRI [18]. NRI is a variational autoencoder (VAE) optimized to discover a relational structure309

while learning the dynamical model of the underlying system. The interaction structure is explicitly310

modeled using a node-to-node message passing operation similar to Gilmer et al. [57]. Given311

sequences of locations and velocities, NRI reconstructs the original trajectory based on the predicted312

interaction graph. As such, the encoder learns to predict a probability distribution of edges between313

nodes without knowing the underlying interaction graph apriori. We leverage a recurrent neural314

network as a decoder to predict multiple time steps into the future and a fully-connected network as315

the encoder. The directed causal graph is inferred through the encoder using 100 frames of “historical”316

data, and then the decoder is used to predict future trajectory (up to 20 frames in our experiments)317

conditioned on the causal graph. We reuse predicted trajectories as inputs of the decoder to estimate318

the further steps. Further specifics of the implementation can be found in [18].319
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NS-DR [9]. CLEVRER is a dataset designed for reasoning about causal relationships between320

objects and events in a video. To accomplish causal reasoning in their work, Yi et al. [9] used a321

propagation network (PropNet) [58] to learn object dynamics from videos and predict object motion322

and collision events. We adapt this dynamics predictor model to our scenario. First, the input to the323

PropNet is segmentation masks of all cars in all frames of a video. These segmentation masks could324

be generated by popular semantic segmentation approaches. However, in our current setup, we use325

the segmentation masks provided by the CausalCity simulation engine, which we assume to be the326

upper-bound in terms of segmentation performance. Next, PropNet builds a directed graph where327

vertices and edges represent cars and their relationship, respectively. Each vertex encodes information328

about states and attributes of a car, where the states denote mask patches taken from a history of329

images, and the attributes denote the color of a car. We adapt our approach by assigning one unique330

color to each car in the scene. Finally, since we do not have collision event like in the CLEVRER331

dataset, our edge relationships do not contain collision state. However, including collision events332

would be an interesting direction for future work in the autonomous driving context. Otherwise the333

implementation matches that of Yi et al. [9] and their associated code base.334
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Figure 5: Trajectory Prediction Error. Mean
square error in future trajectory prediction for eight
car scenarios with two causal connection for a) NS-
DR, b) NRI, b) V-CDN algorithms. Shaded regions
reflect standard error. Notice the different scales
on y-axes for the two plots.

V-CDN [10]. Deep graph neural networks are335

often used to represent underlying properties336

(e.g., dynamics) of physical interactions. V-337

CDN infers the structural causal model (SCM)338

from visual inputs for future prediction without339

supervision from the ground-truth graph struc-340

ture. Li et al. [10] show that this can help models341

perform counterfactual reasoning about unseen342

scenarios. V-CDN consists of three parts; (1)343

a perception module (2) an inference module344

and (3) a dynamics module. Specifically, the345

perception module takes a sequence of images346

and finds keypoints, and the inference module347

takes these keypoints to discover a causal graph348

that represents the causal relationships, i.e., a349

physical connection in their scenario. The dy-350

namics module is a graph recurrent network that351

predicts the future location of keypoints condi-352

tioned on the estimated causal graph.353

We use the official implementation of Li et al. [10] and adapt their inference and dynamics modules,354

while “bypassing” the perception module for fair comparisons with other models. We take location355

and acceleration of the cars as input to compare the results with other baselines. Following Li et al.356

[10], for a set of cars, we construct a directed causal graph and predict the future movement of cars357

by conditioning on the current state and the inferred causal graph. In 5, we report the mean squared358

error of car locations (normalized by image dimensions from 0 to 1).359

6 Discussion360

How do the different methods perform? As expected we observe a gradual increase in trajectory361

prediction error as we attempt to predict the vehicle locations further into the future. Fig. 5 shows the362

normalized mean squared pixel error for time steps 1 to 20 into the future for each of the baseline363

methods (this corresponds to approximately 1 to 20 seconds into the future, as we sample at 1 Hz on364

average). The baselines show differing performance and we observe that for NS-DR the trajectory365

prediction errors increase more rapidly. This is consistent with previous results that found trajectory366

prediction to be poorer without an explicit causal discovery step [10].367

Does agency impact trajectory prediction and causal discovery? When we contrast the perfor-368

mance on the toy dataset with performance on the CausalCity dataset we observe that trajectory369

prediction errors are larger on the CausalCity dataset as we attempt more distant future predictions.370

The key difference between the two datasets is the lack of confounders in the toy dataset (see Fig. 4B371

where the heatmaps contrast the trajectories and dwell times of the vehicles). In the toy dataset372

the trajectories have fixed velocities and the vehicles travel on quite predictable - but less realistic -373
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routes. In the CausalCity dataset the vehicles have agency that allows them to follow the rules of the374

road (e.g., drive in the correct lanes), to avoid collisions with other vehicles (i.e., brake if they are375

approaching another car), stop at traffic lights to reduce the risk of accidents etc.376
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Figure 6: Bar chart showing the F1 score for edge
prediction. i) NRI and ii) V-CDN results for sce-
narios with 4, 8, 12 cars with a fixed proportion
of edges (50% of cars having a causal connection).
iii) NRI and iv) V-CDN results for scenarios with
20%, 50% and 80% of cars with a fixed number of
cars (8). Error bars reflect standard error.

When considering the resulting trajectories of377

the vehicles, this adds significant - but much378

more realistic - confounders. The effect is a379

more challenging task with some room for im-380

provement. It is clear that current state-of-the-art381

benchmarks struggle with trajectory prediction382

to some degree. This may be partially explained383

by the fact that causal discovery tends to be more384

difficult too. Fig. 6 shows the F1 scores for edge385

type discovery on our toy dataset and CausalCity386

dataset. We performed experiments varying the387

number of cars (4, 8, 12) and the percentage of388

causal connections (20%, 50%, 80%). The NS-389

DR method does not perform causal discovery390

and therefore we show the results for NRI and391

V-CDN. We observe that overall these are lower392

for the CausalCity dataset and in particular for393

the case with 8 cars.394

How does the number of cars and causal rela-395

tionships impact results? Discovering causal396

relationships is important as it can help us learn397

the structure of the world and make better predic-398

tions about the future. Fig. 6 shows how causal399

discovery performance varies with the number400

of vehicles and proportion of cars that have a401

causal connection. We observe that causal dis-402

covery becomes more difficult as the number of403

cars increases (holding the proportion of cars404

that have a causal connection constant). Greater405

proportions of causal connections (a less sparse causal graph) aid in causal discovery. One aspect of406

our task that makes causal discovery particularly difficult is how sparse the causal graph is.407

What other tasks can CausalCity support? We chose to demonstrate the capabilities of the408

CausalCity simulation on the task of causal discovery with vehicles in leader-follower style context.409

However, there are many other tasks in the domain of causal reasoning, discovery and counterfactual410

reasoning that the simulation could be used for. For example, our simulation enables a “hero” vehicle411

to be used to create targeted interventions in the scene and such a method could be used to test the412

ability for algorithms to reason counterfactually (i.e., what would have happened if the hero vehicle413

did not stop at the traffic signal?). As this is a simulation it is possible to generate a scene with414

the same initial starting conditions but to strategically intervene with a specific action at a specific415

moment. We have included an example of how to conduct this type of experiment in our repo.416

7 Broader Impacts417

Causal reasoning presents promising opportunities for machine learning. Specifically, causal discov-418

ery and counterfactual reasoning could help create models that are more explainable. Therefore, tools419

that help advance this understanding will be valuable to the research community. However, we must420

acknowledge some limitations of our system. Our simulation environment is designed around the421

task of driving; however, this does not mean that a system trained on these data will be appropriate for422

real-world applications. The scenarios created in our simulation are complex and do have reasonable423

visual fidelity, but the are still a long way from simulating realistic behavior of drivers. We are adding424

pedestrians to the simulation engine but it does not currently feature animals (e.g., birds) which are425

another commonly occurring element in everyday environments. This environment was designed for426

experimentation, specifically in the domain of causal discovery; generalization to real-world tasks -427

especially safety critical ones like driving - would require greater testing on real-world data.428
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